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A 50 - year journey with colleagues, generalized
matrix inverses and applied probability
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Mathematical Sciences, Auckland University of Technology, New Zealand




1965: In the beginning.....

In Feb 1965 introduced to “conditional inverses” in a graduate course

)

Statistics 150 "Analysis of Variance with application to Experimental Design’
within the Dept of Statistics at the UNC Chapel Hill taught by Indra

Chakravarti, using notes prepared by Raj Chandra Bose:

Let A = A(m X n) be any matrix.

Then A* = A*(n X m) will be defined to be
a conditional inverse of A, if AA*A = A.
If A* = A*(n X m) is a conditional inverse
of A = A(m X n) and if the equations

Ax =y are consistent then x_is a solution

if x =A*y.




1968: On the renewal density matrix
of a semi-Markov process

This was the topic of my Ph.D. thesis from the University of
North Carolina at Chapel Hill which examined the necessary
and sufficient conditions for the convergence of the renewal

density matrix.

My supervisor was Prof Walter L Smith
who taught me a course on "Stochastic
Processes" that whetted my appetite to
work in applied probability, in particular
Markov renewal processes, Markov

chains, queueing theory, & renewal theory.

“The mathematics that lasts is the mathematics that is beautiful” (W.L.Smih)




1969: Moments of Markov Renewal
Processes

This paper contained for the first time the identification of
Z=[I-P+TII]", Kemeny & Snell’s fundamental matrix of

a finite irreducible MC as a (one condition) generalized
matrix inverse of /| —P.

The paper contains what Marcel Neuts

referred to as the “classical result on
the mean recurrence time in an
irreducible positive recurrent

Markov renewal process”.

Advances in Applied Probability, 1 (2), 188 - 210, (1969).




1969: Moments of Markov Renewal
Processes
Key Results:
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Z=[I-P+II]" is a 1-condition generalized inverse of I—P.
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Advances in Applied Probability, 1 (2), 188 - 210, (1969).




1973: Sabbatical Leave at UNC-CH

Conference on Analytic and Algebraic Methods in Queueing

Theory, Univ Western Michigan, Kalamazoo, Michigan (May).

Met Ralph Disney who invited me to Univ Michigan (June)
to speak on my current research on
“Renewal theory in two dimensions”.
(Led eventually to 3 papers in the
Advances in Applied Probability).
Led to visits with Disney in

1980, 1987, and 1992 in NZ.




1973: Sabbatical Leave at UNC-CH

Conference on Analytic and Algebraic Methods in Queueing
Theory, Univ Western Michigan, Kalamazoo, Michigan (May).

Met Marcel Neuts who invited me to Purdue Univ (June).
Later to visit him at Univ. of Arizona in 1988
and Marcel to NZ in 1990.




1973: Sabbatical Leave at UNC-CH

Eastern Regional Meeting, Institute of Mathematical
Statistics, Ithaca College, Ithaca, (May 30-June 1).

Met George Styan for the

first time.

(George was talking on

MCs and using generalized
matrix inverses.)

Visit to McGill 1988 following
George's visit to Auckland 1985.




1975: Don McNickle PhD

Donald C. McNickle completed his Ph.D. in Mathematics, Univ.
of Auckland, under my supervision.

Thesis title:
"Processes in the decomposition

of networks of queues”.

Don took up a post-doctoral
position with Ralph Disney.

He recently retired from the Dept.
Management, Univ. of Canterbury.




1980: College of Engineering Visiting
Prof within Dept IEOR at VPI&SU

Hosted by Ralph Disney. Taught graduate course on
"Queueing Theory" & worked with his graduate students.

Completed a major research
paper on”“ Generalized

inverses and their
applications to applied

probability problems”.




1982: Generalized inverses and their
applications to applied probability problems

Examines the applicability of generalized inverses to a wide
variety of problems where a MC is present.
Let P be the transition natrix of a finite irreducible MC with

stationary probability vector z”.

Let u and £ be such that u’e#0and 't #0. Then

|—P+tu’ isnonsingularand [/—P+tu']" is a g-inverse of | —P.

Any g-inverse of [—P hasthe form G=[I—P+tu’ | +ef "+ gn’.

Obtained general procedures for finding stationary distributions,
moments of the first passage time distributions, and asymptotic

forms for the moments of the occupation-time random variables.
Linear Algebra and its Applications, 45, 157 - 198, (1982)




1982: Generalized inverses and their
applications to applied probability problems

In particular, let G be any g-inverse of /—P.

v A

If A=1—(I-P)G then " =—
v Ae

for any v’ such that v’ Ae # 0.

M =[GIT—E(GII), +/—-G+EG ]D where D=(IT ).

[N“’]_(nﬂ)n 1+ (/- TG(I—TT)+ o(1)E.

The above problems are also examined for MRPs and MCs
in continuous time. In the latter case we can use g- inverses of | —P,

or g-inverses of the infinitesimal generator of the process .

Linear Algebra and its Applications, 45, 157 - 198, (1982)




1983: “Mathematical Techniques of
Applied Probability”

Volumes 1 and 2 published by Academic Press




1986: Stationary distributions of
perturbed Markov chains

Techniques for updating the stationary distribution of a finite
irreducible MC following a rank one perturbation of its

transition matrix were discussed.

Let P =P + ab” with b"e=0.

Choose u and ¢ (with u"e#0, £Vt #0).

letot" =u'[I-PY+tu" | and B =b"[I-PY +tu" .
wr_ O or __ (@'a)f’+1-B'a)a’

—— and :
o'e (a’a)(B’e)+(1— B a)a'e)

Then 7w

A variety of situations where such perturbations may arise are
presented together with suitable procedures for the derivation

of the related stationary distributions.
Linear Algebra and its Applications, 82, 201 - 214, (1986)




1987: 16" Conference on Stochastic
Processes and their Applications, Stanford

Met with Bill Henderson, Mike Rumsewicz, Peter Taylor




Taught a course on TV on
“Analysis of Queueing
Systems” that was beamed

over the Eastern U.S. with
students at 6 different
locations.

Pursued research on
feedback queueing systems.

(Led to 4 papers on
Filtering of Markov
Renewal queues —
Advances in Applied

Probability).




1988: Characterizations of generalized
inverses associated with Markovian kernels

Conditions: (1) AXA= A, (2) XAX =X, (3) (AX)" = AX,

(4) (XA)" =(XA), (5) For square matrices AX = XA.
Characterisations of A{1,2}, A{1,3},A{1,4},A{1,5}, A{]1, j, k}.
Partitioned forms for the g-inverses are also presented based

onafull-rank factorization of /- P. Special well-known cases.

Group inverse: A{1,2,5}=[-P+en’ | ' —en’

=(I—en")G(I—ex") foranyg.i. G of I-P.

Moore-Penroseinverse:

A{1,234}=[I-P+ome |*—aen”, o=(mn" )™

Linear Algebra and its Applications, 102, 121 - 142, (1988)




1988: Characterizations of generalized

inverses associated with Markovian kernels
A systematic investigation of the various multi-condition

generalized inverses of | — P , where P is the transition matrix

of a finite, irreducible, discrete-time MC chain, is presented.

fu and ¢ suchthatu e#0and m't %0, then
T-1 _ T1-1 T
=P+t ul T = (1—U)I—P+tu T (1-T,)+ B en’,

eu [T 1
where U, = TZ,TZ:ZT ,and B =— —.
u,e Tt (m't))(u,e)
ert’
A =[I-P+6tu' | —————— does not depend on 4.
o(m' t)(u e)

Based on results of Greville and Ben-Israel.
Linear Algebra and its Applications, 102, 121 - 142, (1988)




1988: Visiting Research Scholar at
Centre for Stochastic Processes, UNC-CH

Hosted by Ross Leadbetter (Jan - March).
Pursued research on computing the stationary distribution

of a Markov chain that lead to a publication in 1991.
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1988: Visit George Styan at McGill

Pursued research (April) on
“parametrising” generalized
inverses which lead to a
publication in 1990.

George tried to persuade me
to stop research on

generalised inverses!




1988: Visiting Scientist, Math Sciences
Institute at Cornell University

Hosted by Uma Prabhu during August.
Uma had appointed me as an
Associate Editor of QUESTA.

| pursued research on “Sojourn
time problems in feedback queues”
which was presented, at that time,
at a “Workshop on Mathematical
Theory of Queueing Systems”,

held at Cornell.

QUESTA: Queueing Systems, Theory and Applications, 5, 55 - 76, (1989)




1990: Parametric forms for generalized
inverses of Markovian kernels and their

applications
Parametric forms for multi-condition generalized inverses

of /—P, where P is the transition matrix of a finite irreducible

discrete time MC, are derived.

Given any g-inverse, G, of | — P there exist unique
parameters &, B, and v such that

G=[l - P+off’ 1" +yer' .

Let A=/—(/—P)G, B=I1—G(I—P).

Then aa=Ae, ' =n'B, y+1=B'Ga.

Note y+1=m'Gox = B'Ge, 't =1,B"e=1.

Linear Algebra and its Applications, 127, 71 - 84, (1990)




1990: Parametric forms for generalized
inverses of Markovian kernels and their

applications

GeAll2}ey=-1,
GeAll3V\eoa=r/n"r,

GeA{l, 4} B=e'/e'e,

GeA{l,5} a=e, B=m.

These are utilized in techniques for obtaining

moments of first passage time distributions.

Linear Algebra and its Applications, 127, 71 - 84, (1990)




1991: The computation of stationary
distributions of Markov chains through
perturbations

_ T AT
letG =/, U, =e /m.
For i=1,2,..,m,letp’ =e'P,
T T T T
u'=u +p - e’ /m,
. T T
Gi — Gi—l T Gi—l (ei—l —€ )(ui—lGi—l/ ui—lGi—lei )
At i=m, let G=G_ and
uG,

' =x' =

" uGe
m m

Journal of Applied Mathematics and Stochastic Analysis, 4 (1), 29 - 46, (1991)







1992: Stationary distributions and mean first

passage times in MCs using generalized inverses
The joint derivation of stationary distributions and

mean first passage times using various g-inverses:

1. Compute G= [gl.j], a g-inverse of | —P.

2. Compute, sequentially, rows 1, 2, ...r ( < m) of
. m
A=I—(I—P)GE[al.j] until Zkzlark,(ls r < m)
is the first non-zero sum.

m .
3. Compute 77:/. = arj/Zkzlark , j=1,...,m.

4. Compute m, = Zkzlark/arj ,j=1,...,m, and for,i#j.

M = {(gjj ~ 9 DA / arj}+ {ka=1(gik —gjk)}.

Asia - Pacific Journal Operational Research, 9 (2), 145 - 153, (1992)




1999: International Conf on Stochastic
Processes & their Applications, Cochin Univ
of Science and Technology, Cochin, India

Invited by Prof Krishnamoorthy as a Plenary Speaker
Talk on “A Survey of

Generalized Inverses
and their use in
Stochastic Modelling”.

Published as a
book chapter.

Advances in Probability and Stochastic Processes, A Volume in Honor of
Professors R.P. Pakshirajan, G. Sankaranarayanan & S.K. Srinivasan,
Notable Publications Inc., New Jersey, USA




2001: Sabbatical Leave at UNC-CH

Visit to Carl Meyer at NC State

Wediscussedtheimportance of
mean first passage timesin

relationto the effects onthe
stationary probabilities when the

MC transitionmatrixis subjected

to perturbations.




2002: Visit to Univ of Nottingham

Met withRobinMilne (Univ of Western Australia)andFrank
Ball (Univ of Nottingham).
Bothhave quotedmy results onthemoments of MRPs

andusedtheresultsinmodellingion channels.




2003: 12th IWMS, Dortmund, Germany

Some colleagues — Jochen, Adi, George




, Bedlewo, Poland
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2005: Stationary distributions and mean first
passage times of perturbed Markov chains

Themean first passage times play animportantrolein
determining the differences between the stationary
probabilitiesinthe perturbedandunperturbedsituations.
Let Gbeany g-inverseof /—P . Let H=G(/—-P) then,

for any general perturbation E, #' —a' =7"EH.
Let N = [nl.j] = [(1—61.1. )mij /mjj] = [(1—6/./. )ml.jnj] then,
for any general perturbation E, #l —a" =—7"EN.

|fE=[gij]and 05/ :Zk 71' 8 then7r 77: Z/?‘-‘j / /J

Some bounds and special cases of row perturbations explored.

Also updating mean first passage times under perturbations.

Linear Algebra and its Applications, 410, 217 - 243, (2005)




Chair LOC 14t I\WMS, Auckland

2005




14th I WMS, Auckland

2005







2005: University of Canberra Statistics
Workshop, Canberra, Australia




2006: Perturbed Markov chains

Exploration of relative andabsolute differences between the
stationary probabilities inthe perturbedandunperturbedsituations.
Bounds for these differences are given and areillustratedby

means of an 8-stateMC example.

If the transitionprobability p _inanirreducible finite MC
is decreasedby anamount € while p , isincreasedby an

amount € then, withtheirreducibility preserved,

T —7

a a

T, — T,
Tty ‘

The example showshow difficultitis to establish universal results

b ET max{m,, m, |= max{

9

T

a

predictinghow MCs behave under perturbations.

In Peter Brown, Shuangzhe Liu and Dharmendra Sharma (Eds.),
Contributions to Probability and Statistics - Applications and Challenges:
Pro International Statistics Workshop , Univ of Canberra, 2005 World Scientific







2006: Mixing times with applications to
perturbed Markov chains

A measure of the “mixing time” or “time to stationarity” ina

finiteirreducible discrete time MCis considered. The statistic
n = Z;mijﬂj, is shown to be independent of the initial

state i (so that 7. =7 for all i), is minimal in the case of a periodic

MC, yet can be arbitrarily large in a variety of situations.

If G :[gl_j] is any g-inverse of | —P, n:1+2 (g..—gj_nj).

=17
For any irreducible m-state MC, n > mT+1

For all irreducible m-state MCs undergoing a general
perturbation E = [eij]

1 <(n-1) H E Hw where H E Hoo: max 2

1<ksm

m

8k/|'

Hn'—ﬁ' |
/=1

Linear Algebra and its Applications, 417, 108-123, (2006)




2006: Workshop on “Matrix Theory and
Applications in Physical, Biological and Social

Sciences”, Penn State Univ, PA, USA




2007: 16" IWMS, Windsor, Canada




2007: Canadian Statistical Society,
St Johns, Newfoundland




2007: Simple procedures for finding mean
first passage times in Markov chains

Elegant new results for finding the mean first passage times.
The procedures of this paper involve only the derivation of
the inverse of a matrix of simple structure, based upon known
characteristics of the Markov chain together with simple
elementary vectors. No prior computations are required.
Various possible families of matrices are explored leading to
different related procedures.

fG,,=[/-P+ee;]"=[g,]. then

1/9,, i=J

r.=9,,j=12,.,m, andm_ = o

ij

Asia - Pacific Journal Operational Research, 24 (6), 813-829, (2007)




2008: 17th IWMS Tomar, Portugal




2008: Variance of first passage times and
applications to mixing times in Markov
chains

A study of the computation of secondmoments of the mixing times,
and the variance of the first passage times,inadiscrete time MC
is carried out leading to some new results.
If G isany g-inverse of | — P,then
M® =2[GM —E(GM) 1+2[I-G+EG ID(ITM) , — M.
We explore the variance of the mixing times, startinginstatei.
They are shownto dependoniandanexploration of recommended
starting states is considered.
v=n"* —n’e=2[1-G+EG lor+[2nG —2tr(GL) -1 —1’]e,
where @' =n'M=e'(IIM) , L=MII = [m, 7 ] (mixing matrix).

Linear Algebra and its Applications, 429, 1135-1162, (2008)




2009: 19th IWMS, Smolenice, Slovakia




2009: Coupling and mixing times in a Markov
chain

The derivation of the expected time to coupling in aMC and its
relation to the expected time to mixing are explored.
Suppose {X } and {Y } both have state space S= {1,2, ...m},

Z = (X,Y), (n= 0),isa2-dim MC with state space S X S.

C= {(i,i),1<i < m} are the coupling states.
T.. be the first passage time from (i, j), (i # j) to C.

(C)

K, = E[T .1 (coupling occurs with probability one)

_ ( ) . . . .
Tc,,-—z, . ,E[Tuc]_ e = expecting time to coupling from |

Computation of 7_ . discussed in detail.

Linear Algebra and its Applications, 430, 2607-2621, (2009)




2009: Coupling and mixing times in a Markov
chain

The two-state cases and three-state cases are examined in

detail.
b
1
TM <Tc,1 <Tc,2
TC,I <TM <Tc,2
TM <Tc,2 <Tc,1
12
TC’I <’L'C’2 <TM
Tc,z <TM <Tc,1
Tc,z <Tc,1 <TM
0

Linear AlgBbra and its Applicationsl/430, 2607-2621, (2009) 1 a




2009: Bounds on Expected Coupling
Times in a Markov Chain

In the paper “Coupling and Mixing Times in MarkovChains”

it was shown that it is very difficult to find explicit expressions
for the expected time to couplingin a general Markovchain.
Simple upper and lower bounds are given for the expected
time to coupling in a discrete time finite Markov chain.
Detailed comparisons are provided for two and three

state chains.

“Statistical Inference, Econometric Analysis and Matrix Algebra.
Festschrift in Honour of G6tz Trenkler”, (pp271-294),

Bernhard Schipp and Walter Kramer (Editors), Physica-Verlag Heidelberg.
ISBN 978-3-7908-2120-8, e-ISBN: 978-3-7908-2121-5




2010: Chair 10C 20t IWMS, Shanghai

The 19th International Workshop on Matrices and Statisticss
June 5-8, 2010 Shanghai China 4

Tyl Organizer:ShanghaiFinanceUniversity
O-OTZANIZErs: aal U i i

L e




2010: Some stochastic properties of
semi-magic and magic Markov chains

This paper explores themainstochastic properties of “magic” MCs
(formed from scaled magic squares) as wellas “semi-magic” MCs
(with doubly - stochastic transitionmatrices). Stationary distributions,
generalized inverses of Markovian kernels, mean first passage times,
variances of the first passage times andexpected times tomixing are
considered.Some generalresults are developed, some observations
fromtheMCs generated by MATLAB are discussed, some conjectures
arepresentedandsome special cases, involving three and four states,

are explored indetail.

Linear Algebra and its Applications, 433, 893-907, (2010)



2010: Some stochastic properties of
semi-magic and magic Markov chains

-
1
For any order n doubly stochastic matrix /!im p¥ = ? =—E.
—00 ee n
eT
" ==« P is doubly stochastic.
n
A* = A" = P is doubly stochastic.
For 3-state doubly stochastic P, M is semi-magic
3 b+2c 2b-+c
' o o
1-b—c b c
2b—+c b+2c
P= c 1—b—c b = M= ; 3
b c 1-b—c
' b+2c 2b-+c
o o

Linear Algebra and its Applications, 433, 893-907, (2010)




2011: 215t IWMS, Tartu, Estonia




2011: 215t IWMS, Tartu, Estonia




2011: 2011: PROBASTAT 2011
Smolenice, Slovak Republic

Julia Voulafova and Steve Kirkland




2011: PROBASTAT 2011 Smolenice,
Slovak Republic

Honouring 70t Birthday




2011: MatTriad, Tomar, Portugal

Invited speaker.

Discussions with Prof Ivo Marek
leading an invitation to speak
at a conference in his honour

in Prague in 2013.




2011: MatTriad, Tomar, Portugal




2012: International Workshop and
Conference on Combinatorial Matrix Theory
and Generalized Inverses of Matrices,
Manipal University, India




2012: The Derivation of Markov Chain
Properties using Generalized
Matrix Inverses

A book chapter giving a survey of the the application of
generalized inverses to stationary distributions, moments
of first passage time distributions and moments of

occupation time random variables in Markov chains.

“Lectures on Matrix and Graph Methods” (pp 61-89) Ravindra B. Bapat, Steve
Kirkland, K. Manjunatha Prasad and Simo Puntanen (Editors), Manipal University
Press, Manipal, Karnataka, India. ISBN: 978-81-922759-6-3 (2012).




2012: Markov chain properties in terms
of column sums of the transition matrix

Questions are posed regarding the influence that the column
sums of the transition probabilities of a stochastic matrix

(with row sums all one) have on the stationary distribution,

the mean first passage times and the Kemenyconstant of the
associated irreducible discrete time MC.

Some new relationships, including some inequalities, and partial
answers to the questions, are given using a special generalized
matrix inverse that has not previously been considered in the

literature on MCs.

Acta et Commentationes Universitatis Tartuensis de Mathematica. 16, (1), 33-51, (2012)



2012: Markov chain properties in terms
of column sums of the transition matrix

We use the generalised inverse H=[h ]= [|—P+ec’ | 'where

¢ =(c,,c,,... c_)isthe row vector of column sums, c'e=m.

m=Y, ch.h =" h=1/m, cHe=1.

1 1 .
= - , [:j’
T,
/ 2i=1cihij
c=esnm=e/m,m =;
v h —h h —h
I N Y
T "
/ Zizlcihif

C

2_ m—Z cCm.=m——=m—c.m ..
=1 f i=1 i T ;o
J

K=1—(1/m)+tr(H)=1—(1/m)+27:1hjj.

Acta et Commentationes Universitatis Tartuensis de Mathematica. 16, (1), 33-51, (2012)




2012: Haifa Matrix Theory Conference,
Technion, Haifa, Israel

Commemorated Prof. Michael (Miki) Neumann and Prof. Uriel
Rothblum. Invited speaker at the Special session in memory of
Professor Michael (Miki) Neumann. Spoke on “Generalized
inverses of Markovian kernels in terms of properties of the MC”.




2013: PIM Conference in honour of Ivo
Marek, Prague, Czech Republic

Invited speaker at the conference on “Preconditioning of
Iterative Methods”.




2013: 22" |WMS, Toronto, Canada

Special session in honour of Shayle Searle
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2013: The Distribution of Mixing Times in
Markov Chains

Expressions for the probability generating function, and hence
the probability distribution of the mixing time, starting in state i,

are derived and special cases explored.
This extends the results the LAA papers of (2006) and (2008).
Let T° be the first hitting time of the mixing state i.

Let T.(O) be the first passage time of the mixing state i.
f,=PT%=nx =i}, f(s)=Y, fs

g, =P{T"=n|X =i} g(s)=) g, s _Pij(s):|'

m | P(s)
(n) n — I — _.
P.(s)= E, ;s f(s) E,jzlnj ij(s)_,g() f(s) P()

Asia-Pacific Journal of Operational Research. Volume 30 (1), 29pp. (2013)




2013: The Distribution of Mixing Times in
Markov Chains

Inaddition, somenew explicit results for the distribution
of therecurrence andthe first passage timesin general
irreducible two andthree state MCs are presented
together with explicit distributions of thehitting time

andmixing time random variables.

Asia-Pacific Journal of Operational Research. Volume 30 (1), 29pp. (2013)




2014: 23t [WMS Ljubljana, Slovenia




2014: Generalized inverses of Markovian

kernels in terms of properties of the Markov
chain
Allone-condition generalizedinverses of the Markoviankernel
| —P,where Pis the transition matrix of afiniteirreducible MC,
can beuniquely specifiedin terms of the stationary probabilities
andthemean first passage times of theunderlying MC.
Specialsub-familiesinclude the groupinverse of I — P ,Kemeny
andSnell’s fundamental matrix of the MCandthe Moore-
Penrose g-inverse. The elements of some sub -families of the
generalizedinverses canalsobere-expressedinvolving the second
moments of therecurrence time variables.
Some applications toKemeny’s constant andperturbations of MCs
arealso considered.
Linear Algebra and its Applications, 447, 38-55 (2014)




2014: Generalized inverses of Markovian
kernels in terms of properties of the Markov

chain
Let G=G(a.B,7) be any g-inverse of | — P. Then the elements

of G= [gij] can be expressed in terms of the parameters

{ai},{ﬁj},y, the stationary probabilities {th}, and the mean

first passage times {m, }, of the MC, with 5,- = Zk#ﬁ m , as

k' ki’

1+7’+5,-_m,-,-+2k¢,-” oam. Z_lnkockSk) T, %]

g, ="
1+7+8 +) o O, -y 7roc5)

k=1 k 'k k

i=j.

Let A* = [af’]z [|—P+en” " —en’ bethegroup inverse of I—P,
m ).

then a; —7Z'(’L' -1-m. )for/;tj, W|tha —77:(1' —-1). (T —Z

klkk!

Linear Algebra and its Applications, 447, 38-55 (2014)




2014: The role of Kemeny’s constant in
properties of Markov chains
In a finite irreducible MC with stationary probabilities {7 }

and mean first passage times m, (mean recurrence time

when i = j) it was first shown, by Kemeny and Snell (1960)
that Zjnjmij is a constant, K, (Kemeny’s constant)

not depending on J.

A variety of techniques for finding expressions and bounds
for K are given.

The main interpretation focuses on its role as the expected
time to mixing in a MC. Various applications are considered
including perturbation results, mixing on directed graphs

and its relation to the Kirchhoff index of regular graphs.

Communications in Statistics — Theory and Methods. 43: 1 - 13, (2014)







2015: SIAM - Applied Linear Algebra
Conference, Atlanta, Georgia, USA

Invited speaker in a Featured Mini symposium on “Numerical
Methods for Markov Chains and Stochastic Models”

A ~, - =
- “ \ (i
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" y -
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Speakers:



2016: Accurate computation of mean first
passage times in Markov and Markov
renewal processes

EGTH Algorithm
Step 1(i): Start with PV = [ py )] , carry out the GTH algorithm by calculating successively,

(n) _(n)
pin pnj

S(n)
(Note that we only have to retain the p;’(1<i<n—1)and p\’(1< j<n-1),ie. the n-th row

m

forn=N,N-1, ...,z,pi(jn_l) =pl.(j")+ R ISiSn—l,lsjSn—l,whereS(n):zn_ipf;)'

j=

and n-th column of P" forn = 2,...,N,as in the GTH algorithm.)

(N)T

— (), ) (V)
=y iy My ) and
1 " py

calculate successively forn=N, N—1,...,2, "’ =pu" +=—" 1<i<n-1.

Step 1(ii): Start with the mean holding time vector u

S(n)
Step 1(iii): Calculate the Nx1 column vector m™™ = (m,) , where m, =u®,
(2) (i) =)
U, , it 2, P My
my, = ,andfori=3,...,N, m, = k=2
21 S(2) 1 S(i)
This gives the entries of the first column of M = [m], ie. m"" where M =

(D(N) 0 (2)(N) (N)N) . (L(N)T
(mN Sy )w1th my =(my,, My, ..., My,).



2016: Accurate computation of mean first
passage times in Markov and Markov
renewal processes

Step 2: Fork=2,3,4,..., N-1,N.

(i) Repeat Step 1(i) but with P = P where P™ = R pMEDCH) with pMO = p™)

(n)
nj

(if) Repeat Step 1(ii) but with g™ = ™ where p™"*®" = y™*"'C™ with g™ = y™

(Comment: This steps leads to the appropriate p!" and p”’ elements.)

(Comment: This step leads to the appropriate K" elements. In the case of a MC no

permutation of the elements is required, since "’ =1 for all i.)

(iii) Repeat Step 1(iii) to calculate the N x1 column vector m,""’ where

— (k)(N)T __
my = (M s My e Mg s Mo L)

Step 3: Combine the results of the Steps 1(iii) and 2(ii7) to find M as follows.

Fv: YNY ——(2)N) —(N)(N) . '
Let M= m{" ,my "...my ') and reorder the elements of M to obtain M =
(D(N) 2 (2)(N) (N)(N)
m)"" ,m™N ... m .

Special Matrices 4:151-175 (2016).



2016: Why the Kemeny Time is a
Constant — with Karl Gustafson




2016: Why the Kemeny Time is a
Constant — with Karl Gustafson

We present a new fundamental intuition for why the Kemeny
feature of a MC is a constant. This new perspective has interesting
further implications.

The new intuition is to see the well-known basic mean first
passage time matrix equation Mm = Ke as a change-of-basis
procedure. By viewing M with its diagonal elements removed

as the change-of-basis matrix to the natural basis intuits that

one must "end up with equally probable pure states".

M1 isin the principal eigenspace of P and is thereforeis a
constant times e. We then explain why the Kemeny vector

has equal coordinates.

(with Gustafson K.) Special Matrices 4:176-180 (2016)



2016: The Computation of the Stationary
Distribution, the Mean First Passage Times
and the Group Inverse and associated with a
Markov Chain via Perturbations

By using perturbationtechniques, starting fromasimple
transistion matrix where only simple derivations are formally
requiredfor ageneralized inverse, the stationary
distributionand themean first passage time matrix,

we update asequence of matrices, formed by linking the
solutionprocedures viageneralizedmatrixinverses
andutilising matrix and vector multiplications.

Six different algorithms are given, somemodifications are
discussed, andnumerical comparisons are madeusing atest

example.

Submitted to Linear Algebra and its Applications, AriXiv.com (2016)



Thanks for the memories

| would like to thank the organisers
— Simo and the IOC team,
— Francisco and the LOC team for this Workshop.

| would like to thank all those who in many ways have
enriched my experiences as an academic.

| would like to thank all the members of the 10C.
| wish them well in future and may the IWMS series of
Workshops — wonderfully conceived by George Styan —

continue to make an impact in the area of “Matrices and
Statistics”.









