Defining positive definite arithmetical functions and a partial order on the set of arithmetical functions by using matrix inequalities

Mika Mattila ${ }^{1}$
${ }^{1}$ Department of Mathematics, Tampere University of Technology, Finland

Abstract

In this presentation we make use of the Löwner order on square matrices and induce a partial order on the set $$
\mathcal{A}=\left\{f: \mathbb{Z}^{+} \rightarrow \mathbb{R}\right\}
$$ of real-valued arithmetical functions. If f and g are given arithmetical functions, we define that $f \preceq g$ if and only if $(S)_{f} \preceq(S)_{g}$ for all $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \mathbb{Z}^{+}$and all $n=1,2, \ldots$, where $(S)_{f}=$ $\left[f\left(\operatorname{gcd}\left(x_{i}, x_{j}\right)\right)\right]$ and $(S)_{g}=\left[g\left(\operatorname{gcd}\left(x_{i}, x_{j}\right)\right)\right]$ are the GCD matrices of the set S with respect to function f and g, respectively.

Positive definiteness of a function $f: \mathbb{R} \rightarrow \mathbb{C}$ is usually defined by demanding that the matrix $\left[f\left(x_{i}-x_{j}\right)\right] \in M_{n}$ is positive semidefinite for all choices of points $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \mathbb{R}$ and all $n=1,2, \ldots[1, \mathrm{p}$. 400]. However, this definition does not work for arithmetical functions defined only on positive integers. By using our newly defined partial order it is natural to define that an arithmetical function f is positive definite if and only if $f \succeq \mathbf{0}$, where $\mathbf{0}$ is the constant function having all of its values equal to 0 .

We shall study the basic properties of our partial order \preceq on \mathcal{A} as well as properties of positive definite arithmetical functions. We also consider some elementary examples.

Keywords

Arithmetical function, Positive definite function, Partial order, Löwner order, GCD matrix.

References

[1] R. A. Horn and C. R. Johnson (1985). Matrix Analysis. New York: Campridge University Press.

