Defining positive definite arithmetical functions and a partial order on the set of arithmetical functions by using matrix inequalities

Mika Mattila¹

¹Department of Mathematics, Tampere University of Technology, Finland

Abstract

In this presentation we make use of the Löwner order on square matrices and induce a partial order on the set

$$\mathcal{A} = \{ f : \mathbb{Z}^+ \to \mathbb{R} \}$$

of real-valued arithmetical functions. If f and g are given arithmetical functions, we define that $f \leq g$ if and only if $(S)_f \leq (S)_g$ for all $S = \{x_1, x_2, \ldots, x_n\} \subset \mathbb{Z}^+$ and all $n = 1, 2, \ldots$, where $(S)_f = [f(\gcd(x_i, x_j))]$ and $(S)_g = [g(\gcd(x_i, x_j))]$ are the GCD matrices of the set S with respect to function f and g, respectively.

Positive definiteness of a function $f : \mathbb{R} \to \mathbb{C}$ is usually defined by demanding that the matrix $[f(x_i - x_j)] \in M_n$ is positive semidefinite for all choices of points $\{x_1, x_2, \ldots, x_n\} \subset \mathbb{R}$ and all $n = 1, 2, \ldots$ [1, p. 400]. However, this definition does not work for arithmetical functions defined only on positive integers. By using our newly defined partial order it is natural to define that an arithmetical function f is positive definite if and only if $f \succeq \mathbf{0}$, where $\mathbf{0}$ is the constant function having all of its values equal to 0.

We shall study the basic properties of our partial order \leq on \mathcal{A} as well as properties of positive definite arithmetical functions. We also consider some elementary examples.

Keywords

Arithmetical function, Positive definite function, Partial order, Löwner order, GCD matrix.

References

R. A. Horn and C. R. Johnson (1985). *Matrix Analysis*. New York: Campridge University Press.

1