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Abstract

In this presentation we make use of the Löwner order on square
matrices and induce a partial order on the set

A = {f : Z+ → R}

of real-valued arithmetical functions. If f and g are given arithmeti-
cal functions, we define that f � g if and only if (S)f � (S)g for
all S = {x1, x2, . . . , xn} ⊂ Z

+ and all n = 1, 2, . . ., where (S)f =
[f(gcd(xi, xj))] and (S)g = [g(gcd(xi, xj))] are the GCD matrices of
the set S with respect to function f and g, respectively.

Positive definiteness of a function f : R → C is usually defined by
demanding that the matrix [f(xi − xj)] ∈ Mn is positive semidefinite
for all choices of points {x1, x2, . . . , xn} ⊂ R and all n = 1, 2, . . . [1, p.
400]. However, this definition does not work for arithmetical functions
defined only on positive integers. By using our newly defined partial
order it is natural to define that an arithmetical function f is positive
definite if and only if f � 0, where 0 is the constant function having
all of its values equal to 0.

We shall study the basic properties of our partial order � on A as
well as properties of positive definite arithmetical functions. We also
consider some elementary examples.
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